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We make a connection between the Schrodinger equation D>W +(E— V)W =0 and the Rayleigh equation
D(pDW)+(k2/F2)WDp~k2pW:0 which is used to study the Rayleigh-Taylor instability of fluids in a
gravitational field. Here D is the differential operator d/dy, p(y) is the density profile of the fluid, W(y) is the
perturbed fluid velocity, k is the wave number of the perturbation, and Fzzyz/g, where vy is the growth rate of
the instability and g is the strength of the gravitational field. The connection between the Rayleigh and the
Schrodinger equations is made by defining a potential V(y) associated with p(y), a wave function W(y)
associated with W(y), and an energy E associated with k. We consider several examples of the Rayleigh
equation and show that they correspond to well-known problems in quantum mechanics such as a particle in a
box, the harmonic oscillator, the Coulomb potential, etc. We illustrate the inversion symmetry of the Rayleigh
equation under p(y)— 1/p(—y), and in an appendix we give and illustrate the more general potential V(y),
which includes surface tension and shear flow, the latter associated with the Kelvin-Helmholtz instability.

PACS number(s): 47.20.—k, 03.65.Ge

I. INTRODUCTION

In this paper we make a connection between two equa-
tions, the Rayleigh equation and the Schrodinger equation,
used in the two different fields of fluid dynamics (FD) and
quantum mechanics (QM), respectively. Historically the
Rayleigh equation was derived first [1]:

kZ
D(pDW)+F WDp—k*pW=0. (1)

In this equation p(y) is the density profile, W(y) is the y
component of the perturbed fluid velocity throughout the
fluid, k2=k§+kf, where k, and k, are the wave numbers of
density perturbations which have the form
Sp(y, etk T2=~2/0 where g is the constant accelera-
tion in the +y direction (or, equivalently, a gravitational field
in the —y direction), and vy is the growth rate of the pertur-
bations, i.e., dp(y,t)=3Jp(y)e”. Finally, D stands for the
operator d/dy. We follow Chandrasekhar’s notation [2],
where Eq. (1) is derived from the fluid equations. It applies
for small or linear perturbations, i.e., dp(y)<<p(y) (see Refs.
[1] and [2]).

The Schrodinger equation was proposed some 43 years
later and reads [3]

D>V +(E—V)¥ =0, 2)

where V(y) is the potential, ¥(y) is the wave function, and
E is the energy of the state described by W. We are using
standard notation where E and V are in units of #%/2m.
Equations (1) and (2) are second-order differential eigen-
value equations. In general there are many solutions
w,,I',) or (¥,,E,), n=1,2,3,..., which must be found by
solving Eq. (1) or Eq. (2) subject to appropriate continuity
and boundary conditions. Loosely speaking, p(y)~ V(y) and
W(y)~W¥(y), while E~k?. An exact relationship will be
given below. Note that the Rayleigh equation has one free
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variable, viz., k2, meaning that one must find the growth
rates as functions of the wave number which varies continu-
ously, 0k <.

Our interest stems primarily from the Rayleigh-Taylor
(RT) instability [1,4] which can reduce the thermonuclear
yield of inertial-confinement-fusion (ICF) capsules [5]. Per-
turbations will grow exponentially in time if I' is positive,
and will oscillate in time if I'? is negative since y will be
imaginary. In the latter case one has innocuous ‘‘gravity
waves,” thus the connection between Egs. (1) and (2) gives
another dimension to the familiar term “wave mechanics”
applied to QM. Clearly, we are considering quite different
“waves’ here.

In addition to the physical problem of instabilities in ICF
capsules the Rayleigh equation is widely used to study buoy-
ancy problems in a fluid where the density varies continu-
ously and to study the evolution of internal waves in oceans
as well as the atmosphere. This wide applicability of the
Rayleigh equation stems from the fact that it is the linearized
limit of the Euler equation in a constant gravitational field.
We do not include viscosity, i.e., the full Navier-Stokes equa-
tion, because its linearized version leads to a fourth-order
differential equation (see [2]) which cannot be put in corre-
spondence with the second-order Schrodinger equation.

Two benefits are expected to emerge from this cross fer-
tilization of fields which, needless to say, is purely math-
ematical. First, we expect to find alternate analytic solutions
to Eq. (1) or, less likely, to Eq. (2). The reason is that many
more analytic solutions to the Schrodinger equation are
known, compared with the one or two known for the Ray-
leigh equation. Second, we expect to contribute to the area of
“potential recovery,” i.e., the inverse problem of determin-
ing the potential V(y) from the scattering phase shifts &, or
the energy eigenvalues E, . This is a well-known problem
(the best example is the Poschl-Teller potential [6]) and the
process is known to lead to nonunique answers in QM. We
hope to shed some light on this problem by applying the
inversion theorem [7] to the Rayleigh equation and then
making the connection to the Schrodinger equation. Accord-
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ing to this theorem the two profiles p(y) and 1/p(—y) have
the same spectrum, i.e., the same set of eigenvalues (but not
eigenfunctions) for all k. This is a nontrivial property whose
physical origin is unknown. For example, for the discrete
density profile p=(1,3,10,6,2,30) we immediately conclude
that a second profile, (1,15,5,3,10,30) exists with the same
“growth” rates for all k£ (“‘growth” in quotes because a few
of the T are negative and hence the associated eigenmodes
are oscillatory in time). Whether there exists a third profile
with the same spectrum is not known—our conjecture is that
it does not [7].

As far as we know there is no similar or corresponding
theorem for the QM case—given an arbitrary V(y) one can
calculate the spectrum; however, one cannot produce in a
straightforward manner a second potential with exactly the
same spectrum. The key words here are “‘arbitrary” and
“straightforward manner”’—otherwise one can find specific
examples of phase equivalent potentials [6,8].

In Sec. II we give the general relations between the Ray-
leigh equation and the Schrodinger equation. Several ex-
amples are given in Sec. III illustrating this relationship. The
inversion theorem is discussed in Sec. IV, and conclusions
given in Sec. V. In the Appendix we extend the Rayleigh
equation to include surface tension and shear flow, and dis-
cuss the potentials associated with them.

II. GENERAL RELATIONS

Equations (1) and (2) are linear in ¥, W, and p, hence an
overall factor in any of these three functions is immaterial.
Define

g(y)=\p(y); ©)]

then it is straightforward to show that Egs. (1) and (2) are
equivalent if

V=gW, (4a)
D?%q k% Dgq
MRS ()
and
E=—k>. (4c)

One can always add an arbitrary constant to V and to E
leaving E—V unchanged, so Eq. (4c) does not limit us to
negative-energy solutions. This will be clear by examples
given later.

As mentioned in the Introduction, k is a real wave num-
ber. Equation (4c) suggests that it might be possible to define
a new class of FD problems with imaginary k, a fairly com-
mon situation in QM where potentials often admit negative
as well as positive-energy eigenstates. We will not pursue
this somewhat intriguing possibility here, and confine our-
selves to the traditional Rayleigh-Taylor instability with real
k.

Given a g(y), it is easy to construct the corresponding
V(y) via Eq. (4b). To go the opposite way is much more
difficult since one must solve the equation

k2
D%G—2—=Dqg—Vg=0 5)
r

to find g(y) for a given V(y).

A typical boundary condition in FD is a semi-infinite fluid
of constant density. The corresponding QM condition is a
constant V. In this constant density or constant V region
W(y) [and hence W(y) since g =const] decays exponentially
with y, i.e, W ~W~e Pl A special case is a fixed bound-
ary representing a wall: here W=0. Similarly, ¥=0. A free
boundary, on the other hand, admits a nonzero value of W,
though it must obey another condition (see below). The fixed
and free boundaries can be formally represented by p= and
p=0, which are related by inversion, and the inversion theo-
rem relates the spectrum of the fixed case with that of the
free case [7].

Unexpectedly, the most severe limitation in making the
FD—QM connection comes from the continuity require-
ments which are based on physical grounds: ¥ and W must
be continuous. The limitation comes from Eq. (4a): if ¥ and
W are to be continuous then g and hence p must also be
continuous. This implies that FD problems with discontinu-
ous density profiles cannot be mapped to a QM problem. In
particular, the classical Rayleigh-Taylor problem which in-
volves a sudden density jump cannot correspond to a QM
problem. Rather than give up continuity of ¥ or W we will
confine ourselves to continuous density profiles. In other
words, defining a jump in a quantity f by Af=f,—f_, we
limit ourselves to problems having A(p)=0.

Unlike the continuity of ¥ and W, which is dictated by
physical requirements and hence beyond our control, there
are no ‘“‘outside” requirements on their derivatives, DW¥ and
DW, other than consistency with the Schrodinger equation
and the Rayleigh equation, respectively. Integrating Eq. (1)
over an infinitesimal distance we obtain [2]

k2
A(pDW)+ 1z WA(p) =0. ©6)

Since we have already decided to limit ourselves to A(p)=0
problems, Eq. (6) implies that DW must also be continuous.
[Equation (6) is modified if surface tension is present and
then DW need not be continuous. ]

At a free boundary the perturbation must satisfy the rela-
tion

k2
DW+ 5z W=0, 7

which follows from Eq. (6) after setting p,=0 or p_=0,
depending on which side the ‘“‘vacuum” is. Note that the
fluid density has canceled out and Eqgs. (6) and (7) must be
obeyed by all the modes. However, a particular mode, which
we have called “trivial” or ‘‘universal,” occurs at a free
surface for all density profiles. This is the mode W=e kb,
I'?=x+k, the sign being determined by which side the
vacuum is (see Ref. [7]). Under inversion a free (fixed)
boundary changes into a fixed (free) boundary, and the inver-
sion theorem states that the spectrum remains the same ex-
cept for the trivial modes which are always present at free
boundaries and always absent at fixed boundaries.
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Turning to QM we integrate Eq. (2) over an infinitesimal
distance, say 0_<y<0, , and obtain

0, 0,
A(D\I’)=f0 \%4'% dy=\I’(O)J0 V(y) dy, (8)

where continuity of W has been used to pull it out of the
integral sign, just as continuity of W was used to write
A(Wp)=WA(p) in Eq. (6). Now, for most potentials the
right-hand side (rhs) of Eq. (8) vanishes because the poten-
tial remains finite, and we conclude from Eq. (8) that DV is
also continuous. However, in the few cases where the rhs is
nonzero then D'W need not be continuous. The best example
is the J&function potential, V(y)~ &(y), the last example
treated in the next section.

To sum up: ¥ and W must be continuous for purely
physical reasons. Then Eq. (4a) implies that g also must be
continuous. Equation (6) then implies that DW must be con-
tinuous. Dg need not be continuous, and DW also need not
be continuous [unless the rhs of Eq. (8) vanishes]. Note that
there is internal consistency: From Eq. (4a) we have DV
=WDq+gDW  and  therefore @ A(DY)=A(WDgq)
+A(gDW)=WA(Dgq); hence A(DW¥)#0 unless A(Dq)=0
also.

Our notation, using y to denote the space coordinate, may
suggest that only one-dimensional (1D) QM problems are
amenable to such correspondence. This need not be the case
because the radial Schrodinger equation in spherical geom-
etry reads exactly like Eq. (2) with y denoting the radius r
and V(y)—I(l+ 1)/r*+ V(r), where [ is the usual quantum
number for angular momentum. One of the examples in the
next section will indeed draw upon the radial Schrodinger
equation.

III. EXAMPLES
Example 1

The best known example is the exponential density pro-
file, treated first by Lord Rayleigh [1,2]. It may come as no
surprise that it corresponds to the QM problem of a ‘““particle
in a box.”

Consider the profile p=e?’, i.e., g=¢”" in the region
0=<y=d, with fixed boundaries or “walls” at y=0and y=d.
Then

,82 k2
V= T B == const. )

The well-known solution of a particle in a box with zero
potential is

min?
E,=—7, n=123,.. (V=0). (10)
Therefore
’7T2}‘l2
E,=V+—y, V=const (11)

Combining Egs. (9), (11), and (4c) we obtain

B4+ k*+ 7*n?l1d?’

I? (12)
which is indeed the growth rate for the RT problem [1,2].

Practically all known analytic solutions of the FD prob-
lem involve exponential density profiles which can be under-
stood via Eq. (9): They correspond to constant potentials, the
simplest QM problem.

Example 2

The second example involves the ‘‘harmonic oscillator,”
V=14xkx% (We use k, instead of the usual k for the spring
constant, so as not to confuse with wave number k.) Already
we find a solution to an FD problem which, as far as we
know, has not been considered previously.

Let p= e over —oo<ly <o, >0; i.e., a Gaussian den-
sity profile. (Such profiles are of interest in a related insta-
bility, the Richtmyer-Meshkov instability, occurring in gas

curtain experiments [9].) Therefore g=e~ % *2 and
V=x?—a—k*T*, (13)
where
k2
x=ay+ 2 (14)

Using D?=d?/dy*= a*d*/dx* in the Schrodinger equation,
Eq. (2), we obtain

v )
W‘{‘(S—fo )\If:(), (15)
where
k=2/a? (16a)
and
k4 1
SEa2F4+E_k la”. (16b)

The following results (and notation) are standard in the har-
monic oscillator problem:

g,=(n+3)how, n=0,12,..., (17)
KEmwz, (18)

where m is the mass of the particle. Remembering that in our
units #2=2m, we have

e,=(2n+1)/a, (19)
which, combined with Eq. (16b), gives

*k
MP=————, n=0,1,2,... . (20)

Vi+2na/k?’

Note that for every growing mode there is an oscillating
mode. The largest growth or oscillation rate is given by
I'?=+k for n=0. A general proof that I'>=-+£ is the largest
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growth rate in the FD problem was given recently [10]. Note
also that I?=+k are the two ‘“trivial” modes which are
present because the fluid approaches a free boundary having
p=0 as y—o (y— —o0) which is stable (unstable). Of course
n=0, g,=3hw, corresponds to the ground state of the har-
monic oscillator.

Example 3

Our next example has actually been considered [11] in the
past in the context of the inversion theorem without, of
course, making the QM connection. (A general treatment of
the inversion theorem is given in Kull’s review paper [12].)
Here we show that it is the Coulomb potential in disguise.

Using a suggestive notation we consider

=20+ =7t 0sr<oo. (21)

P or ¢

Here r stands for y, the space coordinate, and [ is any real
number, not necessarily an integer, satisfying [+1>0.
Substituting Eq. (21) in Eq. (4b) we have

(1+1) Ze?
==z (22)
where
2k%(1+1
Zezf————(l:2—)—. (23)

The bound-state energies of the Coulomb potential are
well-known and usually written in the form
E,=—itmc?a?7%In?, (24a)

where c is the speed of light and « is the fine-structure con-
stant e?/#ic. In units of A%/2m,

Z%e*
E”:_ 4’12 . (24b)
Combining Egs. (23) and (4c) we have
k(l+1
= ( - ) : (25)

In the QM problem / and n are integers, but this is not
necessarily so in the FD problem. The quantization of angu-
lar momentum in QM requires / to be a non-negative integer.
This requirement is absent in the FD problem where / is just
a parameter describing the steepness of the density profile.
The solution [13] of the Schrodinger equation does not re-
quire / to be an integer nor, for that matter, that » be an
integer. It does require, however, that n—/—1 be an integer
equal to or greater than zero [13]. Defining

m=n—I[1—1, (26)
we must have m=0,1,2,... . In terms of m, Eq. (25) reads

k(D ok
~l+1+m—1 m
[+1

2

m=0,12,... , 27)

which agrees with Inogamov’s result [11] after identifying
I+1 with his 8/2(p~y”). Note that the fastest growing mode
(m=0) is indeed the trivial mode I*=k.

Example 4

Consider the profile p=(1—e /%), ie., g=1—e 7',
0=y <. As in the previous example we let r stand for the
position y and, using Eq. (4b), we find

_VO
V= er/a_ 1’ (28)

where
vy 2ak’ )
0=z |1+ 52 (29)

The potential defined in Eq. (28) is known as the Hulthén
potential. From the solution of the QM problem (see, for
example, Ref. [14]) the bound-state energies are given by

a2V0_n2

—En 2na

. n=12,.... (30)

Combining Egs. (29), (30), and (4¢c) we have

2ak?

2:————-
r n’+2nak—1"

n=12,... . (31)

The fastest mode, n=1, again has I'’=k (note the free sur-
face at y=0). There is clearly a one-to-one correspondence
between the fastest growing mode and the ground-state in the
FD and QM problems, respectively.

Example 5

Our last example is of a somewhat different nature be-
cause it involves discontinuous DW¥ and DW, while ¥, W,
and g remain continuous. It is a pure surface tension prob-
lem, i.e., we take g =const but assume that at a certain posi-
tion in space, say y, , there is surface tension denoted by T*.
It is straightforward to show (see the Appendix) that in this
case the potential is

KT®8(y—y,)
V= I 32
57 (32)

where p is the (constant) density of the fluid and vy is the
“growth” rate. Actually, ¥ is negative and perturbations os-
cillate at the frequency | /2.

It is well known [15] that a negative & potential has one
and only one bound state with energy Ey,unq

kST
Epouna=—k*>=— FyLeE (33)
from which we obtain
K37

yr=- , (34)

2p
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in agreement with the FD result [set p;=p,=p in Eq. (51) of
Ref. [2], Chap. X]. )

IV. INVERSION

Let us identify which QM and FD problems do and do not
overlap. There are (infinitely) many FD problems with no
QM counterpart, and vice versa. For example, density jumps
are very common in FD experiments. As we have already
mentioned, such problems have no QM analog because any
discontinuity in p combined with continuity in W would
make ¥ discontinuous [see Eq. (4a)] and hence unphysical.
Another limitation comes from Eq. (4b): Since p or, more
precisely, its derivatives ‘‘define” the potential V, finite-
thickness FD problems [meaning p(y) defined over a finite y
interval] cannot, in general, be put into correspondence with
QM problems. There is no difficulty when the boundaries of
the FD problem are fixed, i.e., the fluid is confined within
two rigid walls, as was the case in example 1: Such bound-
aries can be represented by p=o or V=, i.e., a particle
confined within the same finite y interval. However, a large
class of FD problems have a free boundary and, although one
may define such boundaries by p=0 and perhaps V=0, this
is not sufficient. The difficulty lies in defining ¥ outside this
boundary, and it clearly highlights the difference between the
physical FD and QM problems: In FD p and W are inti-
mately associated, W(y) being the perturbed velocity in the
fluid of density p(y), and they both exist (or do not exist)
over the same y interval. In contrast, ¥(y) exists even where
V(y)=0, reminding us that the particle wave function and
the potential are not as intimately associated.

Conversely, there is a whole class of QM problems with
no FD counterpart: scattering problems. As is well known,
these are the solutions of the Schrodinger equation with E>0
or, using Eq. (4c), k imaginary. As far as we know there has
been no attempt to give a physical meaning to, let alone
solve, the Rayleigh equation with imaginary k, though it may
be possible to do so. The Coulomb potential is a good ex-
ample: It has both bound state (£<<0) and scattering (E>0)
solutions, and only the former corresponds to a FD problem,
as was shown by example 3 in the previous section.

In summary, the set of QM problems and the set of FD
problems intersect in a finite region consisting of continuous
density profiles and bound-state solutions. Inside that region
the connection is given by Egs. (4a), (4b), and (4c). Even
then there are differences of approach: In QM the potential is
given and one finds the bound-state energies E, , which are
quantized. In FD the density profile is given and one finds
the growth rates I, for an arbitrary wave number k. From the
FD point of view the potential is quantized [see Eq. (4b)]
while the energy is an arbitrary number.

The inversion theorem [7] applies to the whole set of FD
problems having continuous or discontinuous density pro-
files. To make the connection with QM we will confine our-
selves to continuous profiles. Such profiles have an infinite
number of growth rates I',,, n=0,1,2,..., which we refer to as
the ““spectrum’ associated with p(y). The inversion theorem
states that the spectrum is invariant under inversion, defined
as p(y)—l/p(—y):

{Fo. T, o) =1L 0. T 1. 020 Firp(—y) (35)
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for all k. A general proof for the continuous case was given
recently by Kull [12] and we will not go into details, except
to point out that under inversion a free (p=0) boundary goes
over to a fixed (p=) boundary, and vice versa. Free bound-
aries support the “trivial” modes I'>=*k while fixed bound-
aries do not. When such boundaries are present one must add
or subtract the trivial modes from Eq. (35).

Since p(y) and 1/p(—y), two completely different pro-
files, yield the same spectrum of growth rates, it follows that
the spectrum alone cannot determine the density profile, a
situation reminiscent of QM. At present it is not known
whether one faces a simple dichotomy or a more complicated
problem. Our conjecture [7] is that there are no other sym-
metries, implying that 1/p(—y) is the only profile having the
same spectrum as p(y). In this context it is important to note
that the spectra are identical for all k and, of course, the
density profiles are independent of k [16]. Finally, we em-
phasize that the eigenvalues (I',) are the same, but not the
eigenfunctions (W,,).

Even if our conjecture is correct and the measurement of
T",, narrows the field down to two possibilities only, we per-
ceive no practical applications of inversion symmetry in FD
because measuring growth rates experimentally is more dif-
ficult than measuring density profiles. The opposite is true in
QM where measuring phase shifts or bound-state energies is
the only way to measure the potential. This is the famous
“inverse problem” in QM to which much effort has been
dedicated over the past 65 years [8]. Although it was Lord
Rayleigh who first posed the question of deducing the den-
sity distribution of a string from the frequencies of its vibra-
tion [8,17], it was the urgency of deducing V(y) in QM, as
opposed to p(y) in FD, which has motivated the study of the
inverse problem.

For practical reasons most efforts have focused on deter-
mining V(y) via the scattering phase shifts and it is well-
known that they do not determine V(y) uniquely—there are
phase-equivalent potentials [8]. Data about bound states can
be used to narrow the choice of the potential [8,18]. How-
ever, nonuniqueness occurs even in purely attractive poten-
tials which have only bound states. In fact the best and per-
haps the earliest example was provided by Poschl and Teller
[6]. The potential is

V(v—1)+u(u—1)

V(y)=a? —
(»)=a 51n2ay coszay

, 0<ay=w/2, (36)

and the spectrum is found to be [6] (see also [14])

E,=a’(p+v+2n)2, n=012,.... (37
Since E, depends only on the sum of u and v and not on
their individual values, it is clear that there are infinitely
many potentials having the same spectrum, a point well il-
lustrated by Poschl and Teller (Fig. 2 in Ref. [6]). For ex-
ample, the potential given by u=v=2 has the same spectrum
as the substantially different potential given by u=1.1,
v=2.9.

We could not find an analytic expression for the density
profile p(y) or, equivalently, g(y) corresponding to the
above potential. In theory ¢(y) could be found by solving
Eq. (5). In practice it is hard to find analytic solutions to Eq.
(5), and therefore we turn to consider some of the examples
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given in the preceding section where we identified g(y) and
the corresponding V(y). Considering V(y) as a functional
of g(y) the inversion theorem states that V[g(y)] and
V[1/q(—y)] are “energy-equivalent” potentials. It may be
possible to define the Rayleigh equation for imaginary k in
which case the inversion theorem could perhaps be extended
to phase-equivalent potentials.

The first example is straightforward because an exponen-
tial density profile remains exponential under inversion. The
boundary conditions, however, change as discussed earlier:
The two fixed boundaries go over to free boundaries. It fol-
lows that the spectrum is the same as before, Eq. (12), plus
the two trivial modes I'*’=—k and I">=k. These modes are
also called universal because they occur for any density pro-
file p(y) between two free boundaries. We should note, how-
ever, that going from the fixed-fixed case to the free-free case
the eigenfunctions W, (y) change substantially (they are no
longer required to vanish at the boundaries) while their ei-
genvalues indeed remain the same. Other boundary condi-
tions were considered in Ref. [7].

We now invert example 2, p(y)=e 2, by letting
p(y)~—>l/p(-y)=e”‘y2. This is, of course, quite a different
density profile, going to infinity as y— oo, The associated
QM problem is still given by Eq. (15) after letting a— —« in
Egs. (13) and (14). Equation (16a) is unchanged (k=2/a?)
while Eq. (16b) becomes

k4
a’T*

1
e= — ——k* o’ (38)
@
Equation (19) remains unchanged because it follows from
Eq. (17), remembering that a>0: Aw=2mw

=\2m+k/m=+\2k=+4/a”=2/a. Therefore
e,=(2n+1)/a, n=0,12,..., (39)
as before. Equating Egs. (38) and (39) we now have

+k
r’= n=0,12,..., (40)

Ji+2(n+ 1) alk?’

to be compared with Eq. (20). Better yet, writing Eq. (40) in
the form of Eq. (20),

*k
Me——, n=12,..., (41)

JI+2na/k?’

we see that the “trivial modes” corresponding to n=0 are
automatically eliminated in this inverted problem. The rea-
son, of course, is that the two “free’” boundaries at = have
become fixed in the inverted profile. The fastest growing
mode is now given by k/+/1+2a/k? instead of k. The dif-
ference vanishes for large k, meaning short wavelenghts, be-
cause these modes are localized near the center and do not
“care” about the boundaries. Except for the two trivial
modes the rest of the spectrum is identical to the previous
one, Eq. (20).

We now invert example 3 given by Eq. (21). The free
boundary (p=0 for y=<0) becomes a fixed boundary (p=o
for y=0) while for y<<0 the profile is given by 1/( —y)2U+h,
ie., g~y "D From Eq. (4b) the potential is found to be

v (I+1)(I+2) K (I+1)

r? rz r - (42)

where we have identified » with —y, so that Ossr<<c as in
the QM problem. Defining

L=I+1 (43a)
and
, 2K’L
Ze = ?— (43b)
we have
L(L+1) Ze?
V= ————, (44)

r r

which is identical to the original problem except that the
“angular momentum” here is one unit larger than before.
However, it is well known that the Coulomb potential has an
“accidental degeneracy,” meaning that the energies are inde-
pendent of the angular momentum, and therefore Egs. (24)
and (25) are valid here also. The only place where the angu-
lar momentum enters is in the requirement that n—L—1 be
an integer equal to or greater than zero. Hence Eq. (26) be-
comes

m=n—L—1, m=0,1.2,..., (45)
or, equivalently, n=1[1+2+ m. Substituting this value in Eq.
(25) we have

, kI+D) &k o1 »
“rarm o mrr 0L (46)
I+1

which can be cast in the form of Eq. (27),

ook
—,
L+ [+1

m=12,.... 47)

This form exhibits explicitly that the spectrum is the same as
before except that the trivial mode I'’=k (m=0) is not
present, as noted by Inogamov [11].

In contrast to the preceding example [compare Egs. (42)
and (47)] even short wavelength perturbations (k—2°) do not
approach I'?=k. The reason probably lies in the fact that the
“harmonic oscillator’ problem had a length scale with which
wavelengths could be compared, while the “Coulomb’ prob-
lem has no such scale.

Next we invert the profile of example 4 defined by
g=1—e7'9, y=0. The free surface at y=0 goes over to a
fixed surface, i.e., p=o0 for y=0 in the inverted profile, and
g=1/(1—¢e*'%) for y<0. From the inversion theorem we
know that the spectrum is still given by Eq. (31) with the
n=1 mode missing, so that the fastest growing mode is now
given by I'>=k/(2+3/2ak). The associated potential has a
somewhat complicated form (an Eckart potential [19]) and
need not be given here.
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We end with our last example, example 5, which is the
simplest of all because p(y) is constant: Letting p—1/p
merely changes the value of that constant and since the Ray-
leigh equation happens to be linear in p(y) a change in scale
is immaterial. The inversion theorem relies heavily on this
property of the Rayleigh equation without which inversion
would not make sense dimensionwise. This linearity in p(y)
must not be confused with the “linear approximation” men-
tioned in the Introduction which makes the Rayleigh equa-
tion linear in W(y). Just as the Rayleigh equation is unaf-
fected if we multiply p(y) by a constant, the associated
potential defined in Eq. (4b) is also unaffected.

V. CONCLUSIONS

A practical consequence of our analysis is the following:
Before solving the Rayleigh equation for a given density
profile construct the potential and see if the corresponding
Schrodinger equation has already been solved. This is usu-
ally the case. If not, try the inverted profile: The Schrodinger
equation for V[1/p(—y)] may have been solved in which
case the inversion theorem can be used to deduce the spec-
trum of p(y), adding or subtracting the trivial modes as ap-
propriate. Of course if neither V(y) nor V[1/p(—y)] has
been solved then this approach is useless.

To go the other way, i.e., construct p(y) from V(y), re-
quires solving Eq. (5), a nontrivial task. As mentioned in the
preceding section, it would be interesting to find p(y) asso-
ciated with the V(y) in Eq. (36). This problem is similar to
example 1, “particle in a box,” so it has probably an expo-
nential form with fixed surfaces at &y =0 and 7/2. A reason-
able ansatz which does not work is g =sin"ay cos“ay.

Despite their similarities there are several differences be-
tween the QM and the FD problems. As we mentioned, one
can define ¥ where V=0, but cannot define W where p=0.
QM has both bound and scattering solutions, while FD has
only “bound” states. Even if we define p=const as a fluid
boundary representing a region where V=0 (since
Dg=D?q=0 for constant g), the FD eigenfunctions must
decay as W(y)~e_kIyi in these regions while W (y)~e ik
for QM.

We have focused on the pure RT problem because it arises
in inertial-confinement fusion [5]. The pure KH (Kelvin-
Helmbholtz) problem has also a simple potential,

DU

Uc “8)

Vku=

where U(y) is the velocity profile and c is a phase speed, so
that a connection with the Schrodinger equation can again be
established. The potential for the more general coupled
RT/KH problem is more complicated and given in the Ap-
pendix.
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APPENDIX

In this appendix we discuss how the potential is affected
by the presence of shear flow in the x direction and by sur-
face tension at interfaces (x-z planes) located at y;. The FD
problem is discussed in Chap. XI of [2], and the general
equation appears as Eq. (16) in that chapter, which is a gen-
eralization of Eq. (1) in this paper. It is straightforward to
show that the potential for the corresponding Schrodinger
equation is given by

vy = D?q N k,D*U+2k (DU)(Dgq)/q
W)= Uk, —iy

k4
2gk*(Dq)lqg— — =T 8(y—y))
4 q

(k=177 (A

In this expression T'{*) is the surface tension of the interface
located at y;, and U(y) is the velocity profile. As before,
q(y)=+/p(y) and vy is the growth rate, i.e., perturbations 7
evolve as e”. One difference with the pure RT case is that y
can now be complex, and c¢=ivy/k, is usually called the
phase velocity so that 7~ e®*=(>7¢n,

Equation (4b) is recovered for U=const and hence, by
Galilean invariance, U=0. The pure KH potential is given by
g =const, so that Vi, =D?*U/(U—c) as given in Eq. (48). If
both U and g are constant then one has a pure surface ten-
sion problem with the potential given by Eq. (32).

Since ¢ is generally complex, so is V. Complex potentials
are associated with the creation or absorption of particles.
However, problems of “neutral stability,” ¢=0, have been
extensively studied in FD and therefore we can associate
such problems with real potentials which are, of course,
more familiar. We illustrate with an example. Consider a
modified Poschl-Teller potential,

_.VO

V= cosh’ay’ (A2)

which has bound states given by [14]

a2
E=——_(-1-2n+ 1+4Vy/a?)? (A3)

where n is a non-negative integer satisfying 2n
<\1+4V,/a?—1. The corresponding FD problem is the
well-known hyperbolic tangent profile [2],

U= Uytanhay, (A4)

so that

v —2a?
KH™ (1 —¢/U)cosh’ay

(AS)

The wave number corresponding to neutral stability can be
obtained by setting ¢=0. Then the problem reduces to Eq.
(A2) with V,=20. Therefore E=—(a?/4)[—1—2n+3]?
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=—a?*(1-n)?, n<l, and we find (n=0 since it must be
non-negative) k= — E= o which is indeed the wave num-
ber having ¢ =0. (See pp. 494—-498 in Ref. [2]. Note that we
have assumed no density stratification, i.e., a pure KH

problem, usually described as “zero Richardson number.”)
The associated eigenfunctions can be found using Eq. (4a),
W~V (since p=const) and is expressed in terms of hyper-
geometric functions [14].
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